
DESIGN ENGINEERING MASTERS PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF DESIGN ENGINEERING

Practical Aspects of Fairness in AI: Implementing
State of The Art Algorithms in the AIF360 Toolkit

Author:
Joseph W. Johnson
CID: 01850831

Supervisor:
Professor Anthony Quinn

June 06, 2024

I would like to acknowledge my supervisor, Professor Anthony Quinn, for his continued guidance and
generously given time throughout this academic year. I would also like to thank Abi Langbridge for her endless
support, Professor Robert Shorten for providing me with the opportunity to be a part of this work, and Dr
Jakub Marecek for his practical advice.

2 2

Abstract

Subgroup Fairness, Instantaneous Fairness, and Distributional Repair are state-of-the-art AI fairness
remediation algorithms. Work was performed to adapt these from novel published methods and code
into general-purpose tools that can be applied as part of the AIF360 fairness toolkit. The need for such
tools within the AI fairness agenda and the principles underlying each algorithm are established. A novel
evaluation of the algorithms is provided, assessing their scalability across various cases.

Contents

1 Introduction 4

2 AI Fairness: Background and Current Challenges 5

2.1 An Introduction To Fairness . 5

2.2 S, X, Y Model and Notation . 5

2.3 Notions of Fairness . 6

2.4 Toolkits for Fairness in AI . 8

3 State-of-the-Art Notions Of AI Fairness and Repair 9

3.1 Subgroup and Instantaneous Fairness . 9

3.2 Conditional Independence . 10

4 Software Methodology for Implementing Algorithms Within AIF360 13

4.1 Development . 13

4.2 Testing and Evaluation . 14

5 LDS Fairness Algorithms 15

5.1 Development . 15

5.2 Testing and Evaluation . 18

5.3 Discussion . 22

6 Distributional Repair Algorithm 23

6.1 Development . 23

6.2 Testing and Evaluation . 25

6.3 Discussion . 31

7 Conclusion 32

7.1 Summary of Work . 32

7.2 Recommendations For Future Work . 32

A Github Repository Links 37

B Additional Algorithms 38

B.1 Subgroup and Instantaneous Fairness . 38

2

Contents Contents

B.2 Distributional Repair . 40

C Word Count 42

3 3

Chapter 1

Introduction

AI fairness is crucial as organisations deploy automated systems to predict human factors like creditworthi-
ness [1], hiring suitability[2], and criminal re-offence risk[3]. Whilst these systems save time and allow all
individuals to be assessed under the same process rather than by individuals with their own biases, they
can also introduce or amplify unfairness. The field of AI fairness aims to measure and remediate these
biases.

Being a relatively modern discipline, technology organisations, including IBM [4], Microsoft [5], and
Google [6] are developing toolkits that allow AI practitioners to assess and repair their systems, using state
of the art methods. As new methods are developed, work must be done to integrate within toolkits in order
to make them accessible to a broad audience.

My work extends IBM’s AIF360 toolkit [4] with three new algorithms: Subgroup and Instantaneous Fair-
ness [7], which reweigh model outputs to equalise loss between subgroups; and Distributional Repair [8],
which maximises conditional independence of datasets before usage. I adapted research implementations
into versatile, accessible tools within AIF360 that can be applied to any dataset.

The project goals were to:

• Explain algorithm functions and concepts for accessibility.

• Adapt research algorithms into generalised implementations.

• Integrate such algorithms within the AIF360 toolkit.

• Produce clear documentation of my work.

• Evaluate algorithms in ways that the hard-coded approaches did not allow.

In Chapter 2, I will introduce the field of AI fairness, explaining the need for a range of fairness tools
and the role that AI fairness toolkits play in enabling the real-world application of AI fairness algorithms.
Following this, Chapter 3 outlines the three state-of-the-art research algorithms I will implement, along
with associated concepts, such as min-max optimisation and conditional independence. Chapter 4 outlines
the general software methodology and approach used to convert research algorithms to AIF360-compatible
tools, proposing a framework that others can use to implement future algorithms. Chapter 5 and Chapter 6
document the integration of algorithms within AIF360, showing how these were generalised, implemented
and evaluated. Finally, Chapter 7 concludes the report, evaluating my work against my goals, reflecting on
my work, and providing suggestions for future work.

Direct links to my implementation can be found in Appendix A

4

Chapter 2

AI Fairness: Background and Current
Challenges

This chapter aims to provide an understanding of fairness within the context of AI. The S,X, Y model,
which will be extended to the S,U,X, Y model in Section 3.2, is defined and used to demonstrate the
breadth of fairness algorithms.

2.1 An Introduction To Fairness

The notion of fairness is a cornerstone of not only responsible AI systems [9] but many modern institutions
such as the United Nations [10], stating that all member states "are accountable to just, fair and equitable
laws". But what is fair? On its surface, achieving a fair outcome can seem trivial; however, as I will
demonstrate, this is a complex question with no single answer spanning mathematics, statistics and ethics.

To frame this, let us consider the example of University Admissions. Whilst one may argue it is simply a
case of admitting those with the most qualifications, in this case, grades or achievements, another may say
that it is fairer to consider an individual’s circumstance and adjust accordingly. In turn, this could prevent
a more qualified individual from achieving admittance due to their advantageous individual circumstance -
could this even be argued to be a form of discrimination? In Section 2.2, the notation used throughout
the report is formalised, and following this, Section 2.3 explores these notions of fairness under rigorous
mathematical formulation.

2.2 S, X, Y Model and Notation

Sensitive attributes, S, also known as protected attributes, are characteristics of an individual that are
considered illegal or unethical to discriminate against [11]. For example, in the United Kingdom, it is
unlawful to discriminate based on age, marital status, disability, race, or sexual orientation[12]. Let
S = {s1, s2, . . . , si ∀i ∈ 1, .., n} denote the set of sensitive attribute values present within a dataset of
n entries. A binary model is used for S, in which s ∈ {0, 1}, representing unprivileged and privileged,
respectively.

Features, X, are characteristics an AI system uses to make a prediction. These can include raw data such
as income, categorised or binned attributes such as pay bands, processed data such as the result of kernel
sampling, and calculated metrics such as creditworthiness. Let X = {{x11, . . . , xk1} . . . {x1i , . . . , xki } ∀k ∈
X ∀i ∈ 1, . . . , n} denote the set of features present within a dataset of n individuals, where each xki
represents the value of X feature k for individual n.

Model outcome, Ŷ , is the output of an AI pipeline, determined by the model g(X|S). This is typically
the output of a classification model, where Y is a statistical output such as classification probability, and Ŷ

5

2.3. Notions of Fairness Chapter 2. AI Fairness: Background and Current Challenges

is the classified type. Let Ŷ = {ŷ1, ŷ2, . . . , ŷi ∀i ∈ 1, .., n} denote the set of outcomes for a dataset of n
individuals, where ŷ ∈ {0, 1}, representing an unfavourable and favourable outcome respectively.

The dataset, D, can be represented as shown in Equation (2.1).

D =

S =

s1
s2
...
si

 ,X =

x11 . . . xk1
x12 . . . xk2
...

. . .
...

x1i . . . xki

∀k ∈ X, Ŷ =

ŷ1
ŷ2
...
ŷi

 , ∀i ∈ 1, . . . , n

 (2.1)

2.2.1 Core Fairness Concepts

Regardless of the specific notion used to measure and remediate fairness, group and instantaneous fairness
should be considered.
Group Fairness: Group fairness[13] requires that, on the whole, each group is treated equitably. This can
be represented as:

T (S = 0) = T (S = 1) (2.2)

Where T (S) represents the treatment T of a group with sensitive attribute S, treatment is a broad term
with many meanings, such as the probability of a favourable outcome or accuracy.

Individual Fairness: Individual fairness[13] requires that individuals with similar features, X, receive
similar treatment, regardless of their sensitive attributes, S. In other words, if two individuals have the
same features but differ in their sensitive attributes, they should receive equal treatment. This can be
expressed as:

T (X = (x1, x2, x3), S = 1) = T (X = (x1, x2, x3), S = 0) (2.3)

where T (X,S) represents the treatment of an individual, given that the X are the same.

2.3 Notions of Fairness

Many notions of a ‘fair’ system exist, with many of these definitions being incompatible. As such, practition-
ers must choose an appropriate notion to measure and repair their system. This includes AI practitioners
implementing algorithms and policymakers, ultimately responsible for systems fairness[14] [15].

Below is a selection of simplistic fairness notions, highlighting how approaches can differ, each with
advantages and challenges. The selection shows no universal definition of ‘fair’, and no clear choice exists,
even in a given situation.

2.3.1 Group Unaware

Under group unawareness, a fair system is one in which Si is not considered by the model, g when
determining Ŷ , as shown in Equation (2.4).

Ŷ = f(X) (2.4)

This is one of the most simplistic approaches. However, it is naive as if a correlation exists between
X and S, for example, postcodes correlating to different ethnic groups [16]. Any underlying bias in this
correlation will affect the fairness of the outcome. Despite these flaws, this approach to fairness has been

6 6

2.3. Notions of Fairness Chapter 2. AI Fairness: Background and Current Challenges

adopted, such as in Frances’s discrimination policies in which it is illegal to record an individual’s race [17]
except for in extreme circumstances, with policies that instead take a ‘colour-blind’ approach to fairness,
addressing socio-economic unfairness through X attributes such as geographic location [18].

2.3.2 Group Threshold

Group Threshold Fairness applies a different threshold, t, for different S attributes when determining Ŷ
[19]. For example, in a recruitment system where Y is a hiring worthiness score, and Ŷ is whether they
are hired or not, t may be lowered for under-represented groups within the organisation, as shown in
Equation (2.5).

Ŷi =

{
1, if Yi > ts=j ∀i ∈ 1, . . . , n, ∀j ∈ 0, 1

0, otherwise
(2.5)

where tsj represents the threshold for the sensitive attribute j.

Model architects adjust thresholds to achieve desired diversity distributions. However, this poses the
challenge of determining fair and justified thresholds for each demographic. This task is often done
through statistical methods or manual tuning to achieve desired demographic distributions. This approach
is frequently criticised due to its positive discrimination [20], with individuals’ outcomes being viewed as a
result of their S attribute rather than their merit as an individual, both by others and themselves [21].

2.3.3 Demographic Parity

A system is considered fair in demographic parity if each group has the same probability of a positive
outcome [22]. This can be given by:

P (Ŷ = 1|S = 1) = P (Ŷ = 1|S = 0) (2.6)

This approach has merit as it leads to equal representation, which can effectively counter historical
or societal inequality. In many cases, the law calls for equal representation, and in these situations,
demographic parity can be a suitable definition of fairness. However, this approach does not account for
situations where some demographics have more qualified individuals, leading to qualified individuals being
rejected in favour of less qualified individuals due to their demographic, which could be seen as unfair by
some.

2.3.4 Equal Accuracy

In a system with equal accuracy, the model is equally accurate for all demographics [23], as demonstrated
below:

Accuracy(S = 1) = Accuracy(S = 0) (2.7)

Let us consider the scenario of a healthcare tool designed to predict if patients are at risk of a disease.
Equal accuracy would ensure that it is equally likely to make a correct prediction regardless of S. However,
if specific demographics were more challenging to predict, the overall accuracy would have to decrease to
achieve equal accuracy, thus putting more lives at risk.

7 7

2.4. Toolkits for Fairness in AI Chapter 2. AI Fairness: Background and Current Challenges

2.4 Toolkits for Fairness in AI

While these notions are simplistic, they highlight the need for a broad range of fairness definitions to fit a
range of AI practitioner’s use cases. Here, the need for AI fairness toolkits arises, allowing users to apply
a broad range of fairness definitions, metrics, and remediation algorithms. These toolkits feature many
algorithms designed to perform these tasks, all with standardised usage patterns. For AI practitioners, this
results in much less work as they need only install and learn one library from which all algorithms can
be trusted to work, a more accessible approach than individually finding algorithms, understanding their
specific usage patterns, and trusting that each developer has created a functioning and well-maintained
tool as opposed to a larger community often managed by a reputable party.

One toolkit is AIF360 [4], founded by IBM and now part of the Linux Foundation [24]. It is an
open-source toolkit designed to provide practitioners with the tools and knowledge necessary to detect
and mitigate bias within their systems. AIF360 follows professional open-source development standards
and practices to aid its adoption into existing pipelines and encourage contributions from the broader
research community. AIF360 enforces standardised methods between its tools, allowing users to select
and exchange algorithms in a modular architecture. Fairness remediation algorithms are categorised into
pre-processing, in-processing, and post-processing. Pre-processing algorithms operate on the dataset used
by a model. In-processing algorithms are used within the training process of an algorithm to alter the
trained model. Post-processing algorithms are applied to the output of a model. Existing algorithms and
my contributions are listed in Table 2.1.

Pre-Processing In-Processing Post-Processing

• Disparate Impact Remover
[25]

• Learning Fair Representation
[26]

• Optimised Preprocessing
[27]

• Reweighing [28]
• Distributional Repair

• Adversarial Debiasing[29]
• ART Classifier[30]
• Exponentiated Gradient

Reduction [31]
• Gerryfair Classifier[32]
• Grid Search Reduction [31]
• Meta Fair Classifier[33]
• Prejudice Remover [34]

• Calibrated Equalised Odds
Processing [35][36]

• Deterministic Reranking [37]
• Equalised Odds

Post-Processing [35][36]
• Reject Object Classification

[38]
• Subgroup Fair Optimiser
• Instantaneous Fair

Optimiser

Table 2.1: Fairness Remediation Algorithms Within AIF360 (My contributions highlighted in purple)

Within AIF360, standard datasets used for assessing fairness algorithms come pre-implemented. This
enables contributors to implement and benchmark their code on several datasets while minimising the
time spent wrangling data. The pre-implemented datasets include:

• The COMPAS dataset [39] derived from a tool used in the U.S. criminal justice system [40] to predict
the likelihood of recidivism, is used to assess bias against age, sex, and race.

• The Adult Census Income dataset [41], based on the 1994 U.S. Census results, uses gender and race
as sensitive attributes to examine income disparity.

• The German Credit dataset [42], which classifies individuals as good or bad credit risks, includes sensi-
tive characteristics like sex and age, as well as potentially correlated attributes, such as unemployment
periods, which could hurt women who had taken a break from work to raise children.

I will use these pre-implemented datasets throughout my work to test and evaluate my implemented
algorithms.

8 8

Chapter 3

State-of-the-Art Notions Of AI Fairness and
Repair

This chapter aims to explain the implemented algorithms, define their notions of fairness, and explain the
core mathematical concepts behind them.

3.1 Subgroup and Instantaneous Fairness

Subgroup and Instantaneous Fairness notions expand on the S,X, Y model by treating S as a set of sensitive
attributes rather than just one. This creates a set of subgroups, š ∈ Š, where each š is a combination of
S attributes such as black male or white female. A set of trajectories exist for each subgroup š, given by
o ∈ Oš∀š , where each o is the forecast over the time period T (o,š). In many AI systems, a single model g is
used for all subgroups, trajectories, and periods to create a single forecast ft. This approach can lead to
under-representation bias if certain subgroups have fewer examples in the training data.

For example, consider a credit scoring system that predicts an individual’s likelihood of defaulting on
a loan. The population can be divided into subgroups based on sensitive attributes like race or gender.
Suppose the training data contains significantly fewer examples of a particular subgroup, such as African
American females. The model may not learn to make accurate predictions for this subgroup, leading to
potentially unfair credit decisions.

In response to this, Quan [7] proposes two new fairness algorithms, Subgroup and Instantaneous
Fairness, as detailed below in Section 3.1.1 and Section 3.1.2 respectively. For both algorithms, a loss
function (o,š) loss(ft) is used, as defined in Equation (3.1).

(o,š) loss (ft) :=
∥∥∥Y (o,š)

t − ft

∥∥∥ (3.1)

Subgroup and Instantaneous Fairness utilise min-max optimisation, also known as minimax or saddle
point optimisation. This aims to minimise the potential maximum loss or maximise the potential minimum
gain in situations concerning multiple groups or individuals to equalise them according to a measure such
as a score or loss function, (o,š) loss(ft), such that a system disproportionately disadvantages no group.
By employing min-max optimisation, algorithms can balance the competing losses for each group, thus
increasing the model’s fairness.

3.1.1 Subgroup Fairness

Subgroup Fairness aims to minimise the sum of losses for each subgroup, thus minimising the maximum
average loss across all subgroups over the entire time frame, as shown in Equation (3.2). Considering the
entire timeframe at once, the Subgroup Fairness method best suits datasets with consistent unfairness.

9

3.2. Conditional Independence Chapter 3. State-of-the-Art Notions Of AI Fairness and Repair

min
ft,t∈T +

max
š∈Š

 1

|Oš|
∑
o∈Oš

1

| T (o,š)|

∑
t∈T (o,š)

(o,š) loss (ft)

 (3.2)

For example, Subgroup Fairness may be applied to a hiring AI pipeline so that, over time, its recom-
mendations promote a diverse workforce. This encourages hiring the most suitable candidates at any
given time while maintaining a balanced distribution of subgroups over the long term, thus resulting in an
overall diverse workforce within an organisation.

3.1.2 Instantaneous Fairness

Instantaneous Fairness aims to minimise the maximum loss across all subgroups over each time step,
equalising the instantaneous loss, as shown in Equation (3.3). While Subgroup Fairness considers the
whole timeframe simultaneously, Instantaneous Fairness considers each period individually, aiming for
constant Fairness. This makes it better suited to datasets where the unfairness varies over time or if
real-time Fairness is more important than long-term Fairness.

min
ft,t∈T +

{
max

t∈T (o,š),o∈Oš,š∈Š

{
(O,š) loss (ft)

}}
(3.3)

An example of where Instantaneous Fairness may be applicable is within a news feed algorithm. In
this way, as news is published and an algorithm determines whether or not to show it to members, no
subgroups are disproportionately shown or not shown the news story. This leads to all subgroups being
equally informed of current events, regardless of how the news might align with their political stance. This
impact can extend far beyond their view of the world, as news feed algorithms are highly influential in
cases such as elections.

Figure 3.1 provides a visual example of how these algorithms affect the predictions of a model on a
dataset with two subgroups.

Figure 3.1: Example application of Subgroup and Instantaneous Fairness applied to a forecast

3.2 Conditional Independence

The S,X, Y model is augmented with an additional attribute, U , when considering conditional indepen-
dence.

Insensitive attributes, U , also known as unprotected attributes, are characteristics of an individual
that are considered fair to use when evaluating someone but are not used by the model, g, to deter-
mine Ŷ . Examples include education, social class, political affiliation, or social media presence. Let
U = {{u11, . . . , um1 } . . . {u1i , . . . , umi } ∀m ∈ U ∀i ∈ 1, . . . , n} denote the set of m insensitive attributes
present within a dataset, where each umi represents an individual insensitive attribute.

10 10

3.2. Conditional Independence Chapter 3. State-of-the-Art Notions Of AI Fairness and Repair

As a result, when discussing conditional independence, the dataset, D, can be represented as:

D =

S =

s1
s2
...
si

 ,U =

u11 . . . um1
u12 . . . um2
...

. . .
...

u1i . . . umi

 ,X =

x11 . . . xk1
x12 . . . xk2
...

. . .
...

x1i . . . xki

 , Ŷ =

ŷ1
ŷ2
...
ŷi

 (3.4)

Figure 3.2 shows the graphical model of D where U is dependent on S, and X is dependent on U .

S U X Ŷ
g(X|S,U)

Figure 3.2: Graphical model of a conditional independence fair system

Figure 3.3 shows an unfair system under the S,U,X, Y model, in which there exists a dependence of
X on S. A conditional independence-based repair method, such as Distributional Repair, aims to minimise
correlation between U and X

S U X Ŷ
g(X|S,U)

Figure 3.3: Graphical model of a conditional independence unfair system

We construct an |X |+ 1 dimensional space when evaluating conditional dependence. Within this, there
exist probability functions P1 = P (Ŷ = 1|S = 1, U,X) and P0 = P (Ŷ |S = 0, U,X for the privileged and
unprivileged groups respectively. Using the KullbackLeibler Divergence (KLD) measure, we can determine
the difference between the probability mass functions, in which a lower score indicates greater conditional
independence. KLD is calculated in Equation (3.5) and Equation (3.6) for discrete and continuous X
attributes, respectively.

DKL(P0||P1) =
∑
x∈X

P0(x) log
P0(x)

P1(x)
(3.5)

DKL(P0||P1) =

∫
χ
P0(x) log

P0(x)

P1(x)
dx (3.6)

Del Barrio et al. [43] propose that to minimise the KLD of the distributions, an optimal transport plan
can be constructed to drive both distributions towards a common distribution. The Wasserstein barycentre
[44] is used for this, as it is the point between the two distributions that requires minimal work to transform
the distributions, thus resulting in minimised damage, or change, to the original data. This results in X
values being reweighed so that they have reduced conditionality on U . This process is demonstrated below
in Figure 3.4.

11 11

3.2. Conditional Independence Chapter 3. State-of-the-Art Notions Of AI Fairness and Repair

Figure 3.4: The process of using an optimal transport plan to move data towards the Barycentre with 2 X
features, from left to right: Mapping instances of Ŷ = 1 against X; Constructing probability mass

functions for S = 1 and S = 0; determining the Barycentre between the two distributions; applying the
optimal transport plan to the data

Optimal transport (OT) is a data transformation method that calculates a plan to move data from one
point to another while minimising the expected cost, in this case, the difference between the original and
the transformed data. OT plans can be calculated from a subset of the data, Dresearch and then applied
to the rest of the data, Darchive. The Distributional Repair algorithm [8] uses this method to learn an OT
plan and apply it to the broader dataset, allowing AI practitioners to effectively increase the conditional
independence of their datasets without the need to reconstruct new OT plans each time the dataset is
updated.

These concepts explain the goals of the implemented algorithms, showing what they strive to achieve
when remediating unfairness in a dataset. More specific information on how these algorithms function is
found in Chapter 5 and Chapter 6.

12 12

Chapter 4

Software Methodology for Implementing
Algorithms Within AIF360

This chapter outlines the process of converting the research code into general-purpose tools within the
AIF360 library and the associated evaluation of these tools.

4.1 Development

The adaptation process began with developing the new tools, as detailed below.

4.1.1 Algorithm Redesign and Refactoring

I started by writing abstract pseudo-codes to understand the generalised processes within the algorithms,
gaining a deeper understanding of how data is manipulated. The existing research code was hard-coded for
singular datasets, making it inaccessible to a broader audience. To address this, I refined the pseudo-code
to use parameters such as S,U,X, Y column names, allowing them to be used on any dataset. I then wrote
the Python code using strong object-oriented principles, abstracting methods into subfunctions to improve
readability and reusability. This improved the source code bases, which often lacked these principles,
leading to long and unstructured algorithms.

4.1.2 Implementation

Implementing algorithms within AIF360 must adhere to standardised inputs, functions, and returns for
their respective tool types. This involves adapting the algorithms to use dataset objects instead of their
existing inputs, such as Pandas DataFrame objects [45]. Algorithms must also use standardised functions
like fit, transform, and predict, which behave consistently across AIF360, allowing users to switch
between algorithms easily.

Dependencies are updated to match pre-existing ones within the codebase, reducing user installation
requirements and increasing readability. Selected tools should be purely Python-based, allowing out-of-the-
box usage when installing AIF360 with the Python Package Manager (PIP) [46].

4.1.3 Documentation

The research code often lacked user documentation, comments, and formal guidance, making it inaccessible
to a broader audience. Therefore, I wrote thorough documentation adhering to AIF360 standards [47].
This included writing sphinx-compatible [48] docstrings for automatic integration with the AIF360 website

13

4.2. Testing and EvaluationChapter 4. Software Methodology for Implementing Algorithms Within AIF360

[4]. Demonstration files were created in Jupyter [49] format, allowing functioning Python code and
detailed Markdown text to be written side by side for visually appealing and readable documentation.

4.1.4 Adherence To Standards

In addition to AIF360’s requirements, I ensured my code adhered to professional standards, including
additional comments explaining complex steps and following the PEP8 [50] style guide for Python.

4.2 Testing and Evaluation

After implementing the new tools, tests were performed to ensure functionality and assess usability and
performance.

4.2.1 Reproducibility Testing

Reproducibility tests ensured the algorithms functioned as expected by running the new AIF360 implemen-
tations and original research algorithms with the same parameters and datasets, comparing results using
plotted data and statistical measures.

4.2.2 Usability Testing

To test documentation quality, I tasked peers with implementing the tools using the demo file instructions.
This validated that the instructions could be used by someone unfamiliar with the algorithms, and feedback
was used to update the documentation where needed.

4.2.3 Evaluation of Algorithms

Once implemented, the algorithms were used to evaluate the research algorithms’ performance in broader
contexts. Due to the hard-coded nature of the research code, the algorithms had only been applied to
singular datasets with little exploration of parameter variance impact. I investigated the effects of parameter
values on performance and computational runtime and assessed performance metrics on alternate datasets
to evaluate the algorithms under different scenarios.

Tests were performed on a Dell Inspiron 16 laptop with an 11th Gen Intel Core i7-11800H CPU at
2.3GHz, NVIDIA GeForce RTX 3060 Laptop GPU, 16GB RAM, and Windows 11 [51].

14 14

Chapter 5

LDS Fairness Algorithms

This chapter outlines the development and evaluation of the Subgroup and Instantaneous Fair algorithms
within the AIF360 toolkit.

5.1 Development

The development process followed my outlined methodology from Chapter 4, by abstracting, generalising,
refactoring and then implementing the algorithm within AIF360.

5.1.1 Algorithm Redesign and Refactoring

First, I generalised the optimisation problem from the original research code[7], using the S, X, Ŷ model.
While the general structure of both the Subgroup and Instantaneous Fairness are similar, they differ in the
optimisation problem that they solve, shown in Equation (3.2) and Equation (3.3), respectively. These
optimisation problems can be seen below in Equation (5.1) and Equation (5.2). It is worth noting that the
algorithms only act to equalise between pairs of subgroups rather than all subgroups at once. The dataset
is filtered by one S value, in this case sex, and then a separate S attribute, such as race, can be applied to
equalise loss between subgroup pairs such as white males and non-white males.

Following this, I abstracted and generalised the overall flow of the algorithm, again under the S,X,Y
format. As the algorithm operates on the output of a model, it is classified as a post-processing algorithm
within AIF360 [4].

When initialised, the class takes S,Ŷ as strings, and X as a list of strings. The values of these strings
are the names of the columns used for each attribute. These values are then stored for later use, as shown
in Algorithm 1.

Once initialised, the fit function, Algorithm 2, is used to generate the decision variables and perform
the optimisation. The fit function takes a subset of D, referred to as the training dataset, Dtrain. The base
rates at which Ŷ = 1 occur are calculated for each S value to be used within the transform function. The
data is split into datasets where Ŷ = 1 and Ŷ = 0. This differs from the original algorithm, which operates
using indexing, as splitting the datasets significantly increased the code readability without significantly
impacting algorithm performance. Following this, the optimisation problem is formulated and solved,
using the optimisations outlined in Equation (5.1) and Equation (5.2) for the Subgroup and Instantaneous
Fairness algorithms, respectively. Finally, the optimisation results are stored within the class, and the
updated class is returned.

15

5.1. Development Chapter 5. LDS Fairness Algorithms

(Subgroup Fairness Optimization Problem)

Decision Variables: a1S=0, a
1
S=1, . . . , a

k
S=0, a

k
S=1 (x1, x2, . . ., xk),

e0, e1 (error),
z0, z1, z2 (objective function)

Constraints: z0 + ŷi −
k∑

j=1

(ajS=0 · xj) + e0 ≥ 0, ∀{i ∈ D | si = 0}

z0 − ŷi +

k∑
j=1

(ajS=0 · xj) + e0 ≥ 0, ∀{i ∈ D | si = 0}

z0 + ŷi −
k∑

j=1

(ajS=1 · xj) + e1 ≥ 0, ∀{i ∈ D | si = 1}

z0 − ŷi +

k∑
j=1

(ajS=1 · xj) + e1 ≥ 0, ∀{i ∈ D | si = 1}

z1 −
1

|{i ∈ D | si = 0}|
∑

i∈{i∈D|Si=0}

(ŷi −
k∑

j=1

(ajS=0 · xj) + e0)
2 ≥ 0 ∀{i ∈ D | si = 0}

z2 −
1

|{i ∈ D | si = 1}|
∑

i∈{i∈D|Si=1}

(ŷi −
k∑

j=1

(ajS=1 · xj) + e1)
2 ≥ 0 ∀{i ∈ D | si = 1}

Objective: min z0 + z1 + z2 + 0.5(z2 − z1) (5.1)

(Instantaneous Fairness Optimization Problem)

Decision Variables: a1S=0, a
1
S=1, . . . , a

k
S=0, a

k
S=1 (x1, x2, . . ., xk),

e0, e1 (error),
z0, z1 (objective function)

Constraints:
z0 + ŷi−

∑k
j=1(a

j
S=0 · xj) + e0

|i ∈ D | si = 0|
≥ 0, ∀{i ∈ D | si = 0}

z0 − ŷi+
∑k

j=1(a
j
S=0 · xj) + e0

|i ∈ D | si = 0|
≥ 0, ∀{i ∈ D | si = 0}

z0 + ŷi−
∑k

j=1(a
j
S=1 · xj) + e1

|i ∈ D | si = 1|
≥ 0, ∀{i ∈ D | si = 1}

z0 − ŷi+
∑k

j=1(a
j
S=1 · xj) + e1

|i ∈ D | si = 1|
≥ 0, ∀{i ∈ D | si = 1}

z1 + ŷi−
∑k

j=1(a
j
S=0 · xj) + e0

|i ∈ D | si = 0|
≥ 0, ∀{i ∈ D | si = 0}

z1 − ŷi+
∑k

j=1(a
j
S=1 · xj)− e1

|i ∈ D | si = 1|
≥ 0, ∀{i ∈ D | Si = 1}

Objective: min z0 + z1 (5.2)

16 16

5.1. Development Chapter 5. LDS Fairness Algorithms

Algorithm 1 Initialisation

procedure INITIALISE(S,X, Ŷ)
store S,X, Ŷ

end procedure

Algorithm 2 Fit

procedure FIT(Dtrain)
load S,X, Ŷ
baseRates← CALCULATEBASERATE(Dtrain, S, Ŷ)

Dprivileged
train ,Dunprivileged

train ← SPLITDATA(Dtrain, S)

constraints, objD, xV ars, e, z ← CREATEOPTIMIZATION(Dprivileged
train , Dunprivileged

train , X, Ŷ)
xV arssolved, esolved, zsolved ← SOLVEOPTIMIZATION(constraints, objD, xV ars, e, z)
store xV arssolved, esolved, zsolved, baseRates
return self

end procedure

Once the fit function has been performed, the transform function, Algorithm 3, is applied. Here, a
subset of D, referred to as the test dataset, Dtest is used. Dtest is reweighted using the solved decision
variables, generating reweighted Y scores which undergo a normalisation process that binds them between
0 and 1. Finally, repaired Ŷ values within D are determined by evaluating the reweighted Y values against
the previously calculated base rates, and the new dataset, D̃test is returned.

Algorithm 3 Transform

procedure TRANSFORM(Dtest)
load S,X, Ŷ , xV arssolved, esolved, zsolved, baseRates
Dtest_reweighted← REWEIGHDATA(Dtest, X, Ŷ , xV arssolved, esolved)
Dtestnormalised← NORMALIZE(Dtestreweighted, Ŷ)
D̃test ← APPLYTHRESHOLD(Dtestnormalised, baseRates, S, Ŷ)
return D̃test

end procedure

Due to the high similarity between both methods, I refactored them into two separate classes, Sub-
groupFair and InstantaneousFair, which both inherit from a BaseLDS class. This significantly improved the
codebase’s maintainability, as debugging changes reflected in both algorithms. The BaseLDS class is an
abstraction of the AIF460 Transformer class, the base class for processes that act on datasets within the
AIF360 toolkit. A Unified Modelling Language (UML) diagram of the class structure can be seen below in
Figure 5.1.

17 17

5.2. Testing and Evaluation Chapter 5. LDS Fairness Algorithms

Figure 5.1: UML Diagram for SubgroupFair, InstantaneousFair and BaseLDS classes

5.1.2 Implementation

The algorithm was implemented within the AIF360 structure, taking dataset objects as inputs as is standard
for the toolkit. The original method required the user to install an additional executable to use the
SDPA solver [52], which reduced the ease of installation compared to alternate methods within AIF360.
As a result, I tested the use of the alternate CVXPY solver [53], as it could be installed automatically
alongside existing Python dependencies. The runtime performance, shown in Figure 5.3, shows that the
computational cost of this solver was significantly greater and proved to increase exponentially as dataset
size increased. As such, users are given a choice between using the CVXPY solver, or if a path to the SDPA
executable is provided, it is used instead.

5.1.3 Documentation

In line with AIF360’s contribution requirements, I wrote sphinx-compatible docstrings for the initialisation,
fit, and transform functions, detailing each parameter to ensure users can select the appropriate S, X and
Ŷ attributes. The use of the optional SPDA solver was also detailed. Comments were written to explain
complex operations like optimisation and reweighting processes. A demonstrative Jupyter notebook was
also created. Plotting code in line with plots from Section 5.2.4 were included to demonstrate how the
results can be visualised.

5.2 Testing and Evaluation

Once implemented, thorough testing was performed to validate my work and further assess the algorithms
beyond their original scope.

5.2.1 Usability Testing

To assess documentation quality, I asked ten peers to apply the algorithms using template Jupyter files and
the provided documentation and demonstration file. Users selected varying, but appropriate attributes
for S and X and correctly selected the Ŷ attribute of income. Although some users relied solely on
the demonstration file, all successfully implemented the algorithms in under 30 minutes, validating the
documentation quality. Some users found the optional usage of the SPDA solver confusing, instead opting to

18 18

5.2. Testing and Evaluation Chapter 5. LDS Fairness Algorithms

use the slower CVXPY solver. While this validated the need for an alternate method to increase accessibility,
documentation was updated to detail the installation and usage of the tool.

5.2.2 Evaluation Metrics

As in [54], algorithm performance was measured using the following metrics:

Independence (IND) , shown in Equation (5.3), measures the difference in the probability of a
favourable outcome, Ŷrepaired = 1, between the two sensitive attribute groups s = 0 and s = 1 after
applying the fairness algorithm. A lower IND value indicates that the algorithm has reduced the disparity
in favourable outcomes between the groups, making the predictions more independent of the sensitive
attribute. Ideally, IND should be close to zero for a fair algorithm.

IND = |P (Ŷrepaired = 1 | s = 0)− P (Ŷrepaired = 1 | s = 1)| (5.3)

Separation (SP) , shown in Equation (5.4), measures the difference in the probability of the repaired
outcome differing from the original outcome, conditioned on the sensitive attribute and the original pre-
dicted outcome. It calculates this difference for both cases whereby the original outcome was unfavourable
and favourable and for both sensitive attribute groups s = 0 and s = 1. A lower SP value indicates that
the algorithm has maintained consistency in its repairs across the sensitive groups and original predicted
outcomes.

SP = |P (Ŷrepaired = 0 | Ŷunrepaired = 1, s = 0)− P (Ŷrepaired = 0 | Ŷunrepaired = 1, s = 1)|
+ |P (Ŷrepaired = 1 | Ŷunrepaired = 0, s = 0)− P (Ŷrepaired = 1 | Ŷunrepaired = 0, s = 1)|

(5.4)

Sufficiency (SF) , shown in Equation (5.5) measures the difference in the probability of the original
outcome being favourable, conditioned on the repaired outcome and sensitive attribute. It calculates
this difference for both cases whereby the repaired outcome is favourable and unfavourable and for both
sensitive attribute groups s = 0 and s = 1. A lower SF value indicates that the repaired outcomes are
sufficient to determine the original outcomes, regardless of the sensitive attribute.

SF = |P (Ŷunrepaired = 1 | Ŷrepaired = 1, s = 0)− P (Ŷunrepaired = 1 | Ŷrepaired = 1, s = 1)|
+ |P (Ŷrepaired = 0 | Ŷunrepaired = 0.s = 0)− P (Ŷrepaired = 0 | Ŷunrepaired = 0, s = 1)|

(5.5)

Inaccuracy (INA) , shown in Equation (5.6), measures the overall probability of the repaired outcome
differing from the original outcome. It quantifies how much the fairness algorithm has altered the original
predictions. A lower INA value indicates that the algorithm has made fewer changes to the original
predictions while still achieving fairness. Ideally, the algorithm should minimise INA while satisfying the
other fairness metrics.

INA = P (Ŷunrepaired 6= Ŷrepaired), (5.6)

5.2.3 Reproducibility Testing

Tests run under the same parameters as the source algorithm validated my implementation, achieving
results that were within acceptable margins given the standard deviations shown in (Figure 5.2).

19 19

5.2. Testing and Evaluation Chapter 5. LDS Fairness Algorithms

(a) Subgroup Fairness (b) Instantaneous Fairness

Figure 5.2: Comparison of results between the source algorithm and my implementation

5.2.4 Evaluation of Subgroup Fair and Instantaneous Fair Algorithm

Runtime Comparison Between SDPA and CVXPY solver

The CVXPY solver had significantly higher computational cost than the original SDPA solver, as expected
from evaluations in [7]. Further experimentation also showed that the CVXPY solver had a time complexity
of O(n2) with regard to the size of the dataset, compared to O(n) using the SDPA solver. The difference in
runtime for a Dtrain size of 20% can be seen in Figure 5.3.

Figure 5.3: Runtime performance of Subgroup and Instantaneous Fairness using the SDPA and CVXPY
optimisation solver libraries

Effect of Dataset Sizes on Subgroup and Instantaneous Fairness Algorithms

Algorithm runtimes were evaluated against Dtrain and Dtest sizes, with varied split percentages, shown
in Figure 5.4. Results show that for both algorithms, the runtime had a complexity of O(n) with regard to
the size of the test dataset

Figure 5.5 shows the effect of Dtrain size on the algorithms’ respective metrics. The algorithms
performed comparably for all sizes, although the standard deviation was often marginally greater for lower
Dtrain. Still, this is caused by the increased variation in Dtrain due to its smaller size. The consistency of
the results across varied training sizes shows the algorithm’s resilience to small training sets, showing that
effective remediation can be achieved even when compute cost is constrained.

20 20

5.2. Testing and Evaluation Chapter 5. LDS Fairness Algorithms

(a) Subgroup Fairness (b) Instantaneous Fairness

Figure 5.4: Runtimes of fit and transform functions within the Subgroup and Instantaneous Fairness
algorithms over varies Dtest sizes

(a) Subgroup Fairness (b) Instantaneous Fairness

Figure 5.5: Metric performance of Subgroup and Instantaneous Fairness algorithms over varied Dtest sizes

21 21

5.3. Discussion Chapter 5. LDS Fairness Algorithms

Evaluation of Applying the Algorithm to the Adult Dataset

The subgroup and instantaneous fair algorithms were applied to the adult to test whether the approach
was suitable for other applications rather than COMPAS. The following parameters were used:

• 10% of data used to train the model
• S = sex
• X = age, hours of work per week, education number
• Y = annual income over 50, 000 (binary)

The results (Figure 5.6) show that comparable scores for the assessed metrics were achieved for both the
COMPAS and Adult datasets, showing that the method applies to other datasets.

(a) Subgroup Fairness (b) Instantaneous Fairness

Figure 5.6: Metric performance of Subgroup and Instantaneous Fairness algorithms applied to the Adult
Dataset

5.3 Discussion

Through my work, I successfully implemented the Subgroup and Distributional Fairness algorithms within
the AIF360 toolkit. The alternate CVXPY solver’s additional capability allows users to choose between
runtime and ease of installation. Implementing the algorithm strengthened my understanding and ability
to solve complex multivariate optimisation problems within Python.

By generalising the algorithms, evaluation beyond the scope of the original work[7] shows that the
algorithm is robust to varied dataset sizes and alternate datasets with different properties and relationships
between attributes.

Both algorithms were limited by their scope of considering only two subgroups at once. Future work
should aim to expand on the algorithms, improving the optimisation processes to account for a scalable
number of subgroups, although this will incur additional computational costs.

22 22

Chapter 6

Distributional Repair Algorithm

The development and evaluation of the Distributional Repair algorithm [8] is detailed in this chapter,
documenting the implementation and evaluation process.

6.1 Development

Like the Subgroup and Instantaneous Fair algorithms in Chapter 5, I followed the development process
outlined in Chapter 4.

6.1.1 Algorithm Redesign and Refactoring

The code [8] was decomposed into separate processes. For each process, hard-coded strings were replaced
with appropriately named variables. In keeping with the AIF360 standards for preprocessing algorithms[55],
I made sure to separate the algorithm into a fit and transform function, along with an initialisation function
as is standard for a class within Python. Additional private subclasses were used to abstract the algorithm,
improving readability and maintainability. Algorithms of subfunctions can be found in Appendix B.1.

When initialised, the class takes S,U ,Ŷ as strings, and X as a list of strings. These values are then
stored for later use, as shown in Algorithm 4.

Algorithm 4 Initialisation

procedure INITIALISE(S,U,X, Ŷ)
store S,U,X, Ŷ

end procedure

The process begins by splitting the dataset, D into a research dataset, Dresearch used to learn the OT
plan, and an archive dataset, Darchive to which remediation is applied.

The fit function, Algorithm 5, takes Dresearch and the number of distributional supports, nq as its input.
The algorithm splits the dataset according to its column names under the S,U,X, Ŷ values, then iterates
through X attributes and unique u values within the dataset. For continuous features of X, supports of
resolution nq are constructed over the distribution, followed by a probability density function (PDF) for
both the privileged and unprivileged groups. The barycentre between the distributions is determined, and
an OT plan is derived to drive data from its original distribution towards the barycentre. Probability mass
functions (PMF) are calculated for discrete features, from which an OT plan can then be derived. Finally,
the data needed to implement the OT plans are stored within the object for later use.

23

6.1. Development Chapter 6. Distributional Repair Algorithm

Algorithm 5 Fit

procedure FIT(Dresearch, nq)
load S,U,X, Ŷ
Sresearch,Ureseach,Xresearch, Ŷresearch ← SPLITDATASET(Dresearch, S, U,X, Ŷ)
for feat ∈ X

for uval ∈ UNIQUE(Ureseach)
if feat is continuous then

support← GETSUPPORT(feat, uval, nq)
pdf0, pdf1 ← GETCONTINUOUSPROBABILITYDENSITYFUNCTIONS(feat, uval)
barycenter ← GETBARYCENTER(pdf0, pdf1, feat, uval)
T0, T1 ← GETCONTINUOUSTRANSPORTPLANS(pdf0, pdf1, barycenter, feat, uval)
store support, pdf0, pdf1, T0, T1

else
if ISVALIDDATA(uval) then
pmf0, pmf1 ← GETDISCRETEPROBABILTYMASSFUNCTIONS(feat, uval)
T ← GETDISCRETETRANSPORTPLAN(pmf0, pmf1)
store pmf0, pmf1, T

else
store pmf0, pmf1 as None

end if
end if

end for
end for
return self

end procedure

Once the OT plans are formulated, the transform function implements the repair on either Dresearch or
Darchive. As shown in Algorithm 6, a repaired X , X̃ is created. The OT plan is retrieved and applied for
each feature within X and each unique value within U . Finally, X̃ replaces the X columns to produce the
transformed dataset D̃, which has now been repaired under the notion of conditional independence.

Algorithm 6 Transform

procedure TRANSFORM(D)
load S,U,X, Ŷ
S,U ,X , Ŷ ← SPLITDATASET(D, S, U,X, Ŷ)
X̃ ← X
for feat ∈ X

for uval ∈ UNIQUE(U)
if feat is continuous then

support← GETSTOREDSUPPORT(feat, uval)
T0 ← GETSTOREDTRANSPORTPLAN(feat, uval, 0)
T1 ← GETSTOREDTRANSPORTPLAN(feat, uval, 1)
X̃ ← CONTINUOUSTRANSFORM(S,U ,X , feat, X̃ , uval, support, T0, T1)

else
X̃ ← DISCRETETRANSFORM(S,U ,X , feat, X̃ , uval)

end if
end for

end for
D̃archive ← JOINCOLUMNS(Sarchive,Uarchive, X̃archive, Ŷarchive)
return D̃archive

end procedure

24 24

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

Implementing the Distributional Repair algorithm was less complex than the Subgroup and Instanta-
neous Fairness algorithms. The original implementation used libraries that could be automatically installed
alongside AIF360 through the dependency list, and as such, no new libraries were needed to be imple-
mented. The algorithms were updated to take and return dataset objects from the AIF360 library instead
of data frames from the panda’s library. The class was updated to inherit from the abstract Transformer
class from within AIF360, as is the standard for algorithms within AIF360 that handle dataset objects. The
final implementation structure can be seen in Figure 6.1, represented as a UML model.

Figure 6.1: UML Diagram for the DistributionalRepair class

6.1.2 Documentation

In line with the requirements for contributing to AIF360, sphinx-compatible docstrings were written for the
initialisation, fit, and transform functions. These detailed each parameter, ensuring the user can select the
appropriate S, U , X and Ŷ attributes. Additional comments were added to the code to explain complex
operations, such as creating the OT plan and using the barycentre.

A demonstration file was also written as a Jupyter notebook consisting of Markdown and Python code,
explaining the algorithm’s core concepts and implementation. Plots akin to those in Section 6.2.4 were also
included, demonstrating to users how to measure and visualise the repair performance for their use case.

6.2 Testing and Evaluation

Following the implementation of the algorithm, evaluation and validation of my work was performed
following the methodology in Chapter 4.

6.2.1 Usability Testing

The documentation quality was tested by challenging ten peers to apply the algorithms. Template Jupyter
files were written to load the necessary imports, along with the functions for plotting the results and

25 25

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

loading the data, as knowledge of this is available to users of the AIF360 toolkit. Users were tasked with
writing the code needed to assign S, U , X and Ŷ parameters, initialising the class, and using the fit and
transform function, with the aid of the written documentation and demonstration file. The COMPAS
dataset was chosen for this task, as the demonstration file already implemented the Adult dataset. Although
users selected varying attributes for S, U and X, their selections were all appropriate. All users correctly
selected the Ŷ of if the individual will reoffend. As with the usability tests for Subgroup and Instantaneous
Fairness algorithms, some users ignored the documentation page and implemented the algorithm based
on the demonstration file alone. All users successfully implemented the algorithms in under 20 minutes,
validating the quality of the documentation. Some users questioned if attributes belonged under the U or
X label. As such, the documentation was updated to clarify that the X attributes were used by the model,
being specific to the use case, not the dataset.

6.2.2 Evaluation Metrics for Distributional Repair

The Kullback-Leibler divergence (KLD) [56][8] was used to evaluate the performance of the Distributional
Repair algorithm. The difference between the reweighted distributions where s = 1 and s = 0 within D̃
is determined and used to measure conditional independence, as shown in Equation (6.1), utilising the
Equation (3.6) and Equation (3.5).

U-Mean KLD =
1

2
DKL [f(x | y = 0, u)|f(x | y = 1, u)] +

1

2
DKL [f(x | y = 1, u)|f(x | y = 0, u)] (6.1)

6.2.3 Reproducibility Testing

To ensure that my implementation and the original had the same behaviour, the algorithm was run on the
Adult dataset under the same parameters to validate my implementation. 100 iterations of tests were run
for both, with the results in Figure 6.2 showing that equivalent results were achieved, thus validating my
work. The randomised data splits account for the slight deviation.

Figure 6.2: Comparison of results between the source algorithm and my implementation.

6.2.4 Evaluation of Distributional Repair Algorithm

Performance Against Different S

In the original work, S = sex was used, which showed promising results for the effectiveness of increasing
conditional independence. To ensure that the algorithm scaled well to other S attributes, a test was
performed using S = race. As before, the algorithm effectively improved conditional independence in both
D̃research and D̃archive. The results can be compared in Figure 6.3. For both tests, the following were used:

26 26

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

• U = college educated (binary)
• X = age, hours of work per week
• Y = annual income over $50,000 (binary)

200 tests were run, with randomised splits between D̃research and D̃archive to assess the robustness of the
algorithm regardless of how it is split. D̃research lengths of 10,000 were used. The low standard range,
indicated by the bars in Figure 6.3, shows that regardless of the split, consistent results were achieved that
increased conditional dependence for all X attributes across both datasets.

Figure 6.3: KLD fairness testing on D̃research and D̃archvie under varied S attributes.

Assessing Performance on the COMPAS Dataset

The COMPAS dataset assessed whether the algorithm was effective on alternate datasets. The COMPAS
dataset provided a good test as it features well-formatted data, yet a smaller size of only 7,214 rows
compared to the 48,842 in the Adult dataset. It was tested separately with S = race and S = sex. Other
attributes were as follows:

• U = charge degree
• X = age, total priors count, decile score
• Y = will re-offend (binary)

Due to the smaller size, a smaller Dresearch size of 5,000 was used. The results, shown in Figure 6.4,
show that the algorithm reduced the net U-Mean KLD; however, for some X attributes, U-Mean KLD
increased. This indicated that the performance was worse, most likely due to the smaller Dresearch size -
behaviour that matches both my testing in Section 6.2.4 and Langbridge’s research [8].

27 27

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

Figure 6.4: KLD fairness testing performed on the COMPAS dataset

Effect of Research Dataset Size

200 iterations of tests were performed on the Adult dataset for varied Dresearch sizes between 1,000 and
15,000. These tests used the same parameters as the S = sex case in Figure 6.3.

Figure 6.5: Runtime of each Distributional Repair function over varies Dresearch sizes

Observing the runtimes in Figure 6.5, it is shown that fit and transform functions have time complexities
of O(1) and O(n), respectively, when considering the number of samples in the input dataset.

28 28

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

Figure 6.6: KLD fairness values for the original and repaired Dresearch and Darchive

Figure 6.6, shows that the performance of the algorithm is proportional to |Dresearch|−1, with a larger
Dresearch giving better results. Effective remediation begins when the repaired lines intersect the original
lines for their respective dataset. For the given inputs, we can see that to improve the U-Mean KLD for
both X values, a dataset size of at least 8,000 is needed for this specific configuration.

Effect of the Number of Probability Distribution Supports

Testing was performed to evaluate the impact of changing the number of supports, nq, on the runtime and
the U-Mean KLD performance. 200 iterations of tests were run for values of nq between 50 and 1000. For
these tests, the same parameters as the S = sex case in Figure 6.3, with a Darchive size of 10,000.

(a) Fit and Transform runtimes (b) Fit runtime with overlaid O(n2) curve

Figure 6.7: Runtimes of each Distributional Repair function

Figure 6.7 shows that the fit and transform functions have runtime complexities of O(n2) and O(n)
respectively, with regards to nq.

29 29

6.2. Testing and Evaluation Chapter 6. Distributional Repair Algorithm

Figure 6.8: KLD fairness values for the original and repaired Darchvive and Dresearch

Plotting the U-Mean KLD for the original and repaired Darchvive and Dresearch, as shown in Figure 6.8,
indicates an optimal number of supports for each feature in X. The algorithm currently allows the user
to define a single nq for all X attributes, or if undefined, a default value of 250 was used; however, this
suggests that there is scope for future improvement to the algorithm by automatically finding an optimal
value of nq.

Exploring the Relationship Between the Size of the Research Dataset and the Number of Probability
Distribution Supports

The relationship between the number of supports and the size of the research dataset was evaluated. As
shown in Figure 6.9, the optimal number of supports for a given research dataset size increases with the
number of samples; however, as in Figure 6.8, this relationship is inconsistent across X attributes.

Figure 6.9: KLD Fairness Values of D̃archive. The red line shows the optimal nq for each Darchive.

As before, this shows future scope to automatically determine optimal nq values for each X attribute
independently.

30 30

6.3. Discussion Chapter 6. Distributional Repair Algorithm

6.3 Discussion

My work successfully implemented the Distributional repair algorithm, making the tool accessible to a
broad audience of AI practitioners. Generalising and adapting the algorithm enabled me to understand
better the underlying concepts of optimal transport and probability functions.

The Distributional repair algorithm was deemed a highly effective means of remediating unfairness
within a dataset. Its preprocessing nature aids in increasing the explainability of the models, as practitioners
do not need to understand any processes within black box models. This approach is also beneficial when
developing AI systems, as the process needs to be applied only to the dataset once rather than to the model
or result at each trial.

The model performed highly across all tests, delivering solid results regardless of the dataset or
attributes used. Weaknesses of the model regarding small dataset sizes or incorrect nq values as outlined in
[8] were also reinforced, with these caveats made clear to users within the demonstration document.

As proposed, there is scope for future algorithm development through the automated optimisation of
independent nq values for each X attribute. As the whole process must be applied to determine the KLD
values when applied to Darchive, an iterative approach would be a suitable solution. One such method may
be to use stochastic gradient descent with momentum[57] due to its computational efficiency and ability
to overcome local minima as present in Figure 6.8 and Figure 6.9.

Overall, I found the distributional repair algorithm to be a strong approach to remediating unfairness
within a dataset. It provides consistent and positive results throughout tests whilst incurring a relatively
low computational cost.

31 31

Chapter 7

Conclusion

7.1 Summary of Work

In conclusion, my work successfully met the goals outlined in Chapter 1.

• Accessible explanations of the algorithms concepts and processes were effectively detailed within this
report and the code documentation.

• The research algorithms were converted into general-purpose tools within the AIF360 framework,
allowing them to be used by AI practitioners within their own AI fairness pipelines and successfully
validated against the research algorithms.

• Clear documentation of these tools was created, and their clarity and effectiveness were validated
through user testing.

• I effectively evaluated parameter variance on all algorithms through informative data visualisations,
providing new insights into the parameters’ impact on model performance and computational cost.

As a result of my contribution to the field of AI fairness, Subgroup Fairness, Instantaneous Fairness, and
Distributional Repair algorithms are now accessible to a broad audience of AI practitioners.

7.2 Recommendations For Future Work

In addition to the future scope of the implemented algorithms detailed in Section 5.3 and Section 6.3, I have
identified recommendations for future AI fairness algorithm researchers. I recommend that strong coding
practices be used when developing new algorithms. Object-orientated structures should be used, along
with well-named and sufficiently documented subfunctions, to create both readable and maintainable
code. Hard coded values should be avoided, as they limit the algorithm’s real-world usage and the
evaluation that can be performed on such algorithms, leaving many assumptions regarding scalability
unanswered. Additionally, algorithm designers should aim to work within an established toolkit such as
AIF360, allowing them to utilise the pre-existing methods for tasks such as metric measurement, thus
reducing the development time of new algorithms.

32

Bibliography

[1] Janine S. Hiller et al. “Fairness in the Eyes of the Beholder: AI; Fairness; and Alternative Fairness in
the Eyes of the Beholder: AI; Fairness; and Alternative Credit Scoring Credit Scoring”. In: 2021. URL:
https://www.semanticscholar.org/paper/Fairness-in-the-Eyes-of-the-Beholder%3A-
AI%3B-Fairness%3B-Hiller-Tsamados/12b1de223c84b90c7c1fe096f2a77aacd4941114 (visited
on 06/06/2024) (cit. on p. 4).

[2] Lou Therese Brandner et al. “How Data Quality Determines AI Fairness: The Case of Automated
Interviewing”. en. In: () (cit. on p. 4).

[3] Emilio Ferrara. “Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, And
Mitigation Strategies”. In: Sci 6.1 (Dec. 2023). arXiv:2304.07683 [cs], p. 3. ISSN: 2413-4155. DOI:
10.3390/sci6010003. URL: http://arxiv.org/abs/2304.07683 (visited on 06/06/2024) (cit. on
p. 4).

[4] AI Fairness 360 documentation aif360 0.6.1 documentation. URL: https://aif360.readthedocs.i
o/en/latest/index.html (visited on 05/22/2024) (cit. on pp. 4, 8, 14, 15).

[5] FATE: Fairness, Accountability, Transparency & Ethics in AI. en-US. URL: https://www.microsoft.c
om/en-us/research/theme/fate/ (visited on 05/22/2024) (cit. on p. 4).

[6] Google Responsible AI Practices. en. URL: https://ai.google/responsibility/responsible-ai-
practices/ (visited on 05/22/2024) (cit. on p. 4).

[7] Quan Zhou, Jakub Marecek, and Robert N. Shorten. “Fairness in Forecasting of Observations
of Linear Dynamical Systems”. en. In: Journal of Artificial Intelligence Research 76 (Apr. 2023).
arXiv:2209.05274 [cs, eess, math, stat], pp. 1247–1280. ISSN: 1076-9757. DOI: 10.1613/jair.1.1
4050. URL: http://arxiv.org/abs/2209.05274 (visited on 09/26/2023) (cit. on pp. 4, 9, 15, 20,
22).

[8] Abigail Langbridge, Anthony Quinn, and Robert Shorten. Optimal Transport for Fairness: Archival
Data Repair using Small Research Data Sets. en. arXiv:2403.13864 [cs, math, stat]. Mar. 2024. URL:
http://arxiv.org/abs/2403.13864 (visited on 05/09/2024) (cit. on pp. 4, 12, 23, 26, 27, 31).

[9] Richard Benjamins, Alberto Barbado, and Daniel Sierra. “Responsible AI by Design in Practice”. en.
In: () (cit. on p. 5).

[10] Equality and Non-discrimination - United Nations and the Rule of Law. URL: https://www.un.org
/ruleoflaw/thematic-areas/human-rights/equality-and-non-discrimination/ (visited on
11/29/2023) (cit. on p. 5).

[11] Surbhi Rathore. “MODEL AGNOSTIC FEATURE SELECTION FOR FAIRNESS”. en. PhD thesis.
Kingston, RI: University of Rhode Island, 2022. DOI: 10.23860/thesis-rathore-surbhi-2022.
URL: https://digitalcommons.uri.edu/theses/2291 (visited on 06/06/2024) (cit. on p. 5).

[12] Discrimination: your rights. en. URL: https://www.gov.uk/discrimination-your-rights (visited
on 11/29/2023) (cit. on p. 5).

[13] Pranjal Awasthi et al. Beyond Individual and Group Fairness. en. arXiv:2008.09490 [cs, stat]. Aug.
2020. URL: http://arxiv.org/abs/2008.09490 (visited on 06/04/2024) (cit. on p. 6).

[14] Candice Schumann et al. “We Need Fairness and Explainability in Algorithmic Hiring”. en. In: New
Zealand (2020) (cit. on p. 6).

33

https://www.semanticscholar.org/paper/Fairness-in-the-Eyes-of-the-Beholder%3A-AI%3B-Fairness%3B-Hiller-Tsamados/12b1de223c84b90c7c1fe096f2a77aacd4941114
https://www.semanticscholar.org/paper/Fairness-in-the-Eyes-of-the-Beholder%3A-AI%3B-Fairness%3B-Hiller-Tsamados/12b1de223c84b90c7c1fe096f2a77aacd4941114
https://doi.org/10.3390/sci6010003
http://arxiv.org/abs/2304.07683
https://aif360.readthedocs.io/en/latest/index.html
https://aif360.readthedocs.io/en/latest/index.html
https://www.microsoft.com/en-us/research/theme/fate/
https://www.microsoft.com/en-us/research/theme/fate/
https://ai.google/responsibility/responsible-ai-practices/
https://ai.google/responsibility/responsible-ai-practices/
https://doi.org/10.1613/jair.1.14050
https://doi.org/10.1613/jair.1.14050
http://arxiv.org/abs/2209.05274
http://arxiv.org/abs/2403.13864
https://www.un.org/ruleoflaw/thematic-areas/human-rights/equality-and-non-discrimination/
https://www.un.org/ruleoflaw/thematic-areas/human-rights/equality-and-non-discrimination/
https://doi.org/10.23860/thesis-rathore-surbhi-2022
https://digitalcommons.uri.edu/theses/2291
https://www.gov.uk/discrimination-your-rights
http://arxiv.org/abs/2008.09490

Bibliography Bibliography

[15] Aislinn Kelly-Lyth. “Challenging Biased Hiring Algorithms”. In: Oxford Journal of Legal Studies 41.4
(Dec. 2021), pp. 899–928. ISSN: 0143-6503. DOI: 10.1093/ojls/gqab006. URL: https://doi.org
/10.1093/ojls/gqab006 (visited on 05/22/2024) (cit. on p. 6).

[16] Kevin Credit. “Neighbourhood inequity: Exploring the factors underlying racial and ethnic disparities
in COVID19 testing and infection rates using ZIP code data in Chicago and New York”. en. In:
Regional Science Policy & Practice 12.6 (Dec. 2020), pp. 1249–1271. ISSN: 1757-7802, 1757-7802.
DOI: 10.1111/rsp3.12321. URL: https://rsaiconnect.onlinelibrary.wiley.com/doi/10.111
1/rsp3.12321 (visited on 05/22/2024) (cit. on p. 6).

[17] Article 8 - Law No. 78-17 of January 6, 1978 relating to computing, files and freedoms - Légifrance. URL:
https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000037090124/2019-03-18
(visited on 05/23/2024) (cit. on p. 7).

[18] Race Policy in France. en-US. URL: https://www.brookings.edu/articles/race-policy-in-fra
nce/ (visited on 05/23/2024) (cit. on p. 7).

[19] Arthur Charpentier. “Group Fairness”. en. In: Insurance, Biases, Discrimination and Fairness. Ed. by
Arthur Charpentier. Cham: Springer Nature Switzerland, 2024, pp. 309–355. ISBN: 978-3-031-
49783-4. DOI: 10.1007/978-3-031-49783-4_8. URL: https://doi.org/10.1007/978-3-031-497
83-4_8 (visited on 05/22/2024) (cit. on p. 7).

[20] Thomas E. Weisskopf. “Is Positive Discrimination a Good Way to Aid Disadvantaged Ethnic Com-
munities?” en. In: Handbook on Economics of Discrimination and Affirmative Action. Ed. by Ashwini
Deshpande. Singapore: Springer Nature Singapore, 2023, pp. 699–717. ISBN: 978-981-19416-5-8
978-981-19416-6-5. DOI: 10.1007/978-981-19-4166-5_44. URL: https://link.springer.com/1
0.1007/978-981-19-4166-5_44 (visited on 05/23/2024) (cit. on p. 7).

[21] Mike Noon. “The shackled runner: time to rethink positive discrimination?” In: Work, Employment
and Society 24.4 (Dec. 2010). Publisher: SAGE Publications Ltd, pp. 728–739. ISSN: 0950-0170.
DOI: 10.1177/0950017010380648. URL: https://doi.org/10.1177/0950017010380648 (visited
on 05/23/2024) (cit. on p. 7).

[22] Zhimeng Jiang et al. “GENERALIZED DEMOGRAPHIC PARITY FOR GROUP FAIRNESS”. en. In:
(2022) (cit. on p. 7).

[23] Richard Berk et al. “Fairness in Criminal Justice Risk Assessments: The State of the Art”. en. In:
Sociological Methods & Research 50.1 (Feb. 2021), pp. 3–44. ISSN: 0049-1241, 1552-8294. DOI: 10.1
177/0049124118782533. URL: http://journals.sagepub.com/doi/10.1177/0049124118782533
(visited on 05/22/2024) (cit. on p. 7).

[24] Linux Foundation - Decentralized innovation, built with trust. en. URL: https://www.linuxfoundati
on.org (visited on 05/22/2024) (cit. on p. 8).

[25] Michael Feldman et al. Certifying and removing disparate impact. arXiv:1412.3756 [cs, stat]. July
2015. DOI: 10.48550/arXiv.1412.3756. URL: http://arxiv.org/abs/1412.3756 (visited on
05/22/2024) (cit. on p. 8).

[26] Rich Zemel et al. “Learning Fair Representations”. en. In: Proceedings of the 30th International
Conference on Machine Learning. ISSN: 1938-7228. PMLR, May 2013, pp. 325–333. URL: https://p
roceedings.mlr.press/v28/zemel13.html (visited on 05/22/2024) (cit. on p. 8).

[27] Flavio Calmon et al. “Optimized Pre-Processing for Discrimination Prevention”. In: Advances in Neural
Information Processing Systems. Vol. 30. Curran Associates, Inc., 2017. URL: https://papers.ni
ps.cc/paper_files/paper/2017/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html
(visited on 05/22/2024) (cit. on p. 8).

[28] Faisal Kamiran and Toon Calders. “Data preprocessing techniques for classification without discrimi-
nation”. en. In: Knowledge and Information Systems 33.1 (Oct. 2012), pp. 1–33. ISSN: 0219-1377,
0219-3116. DOI: 10.1007/s10115-011-0463-8. URL: http://link.springer.com/10.1007/s101
15-011-0463-8 (visited on 05/22/2024) (cit. on p. 8).

34 34

https://doi.org/10.1093/ojls/gqab006
https://doi.org/10.1093/ojls/gqab006
https://doi.org/10.1093/ojls/gqab006
https://doi.org/10.1111/rsp3.12321
https://rsaiconnect.onlinelibrary.wiley.com/doi/10.1111/rsp3.12321
https://rsaiconnect.onlinelibrary.wiley.com/doi/10.1111/rsp3.12321
https://www.legifrance.gouv.fr/loda/article_lc/LEGIARTI000037090124/2019-03-18
https://www.brookings.edu/articles/race-policy-in-france/
https://www.brookings.edu/articles/race-policy-in-france/
https://doi.org/10.1007/978-3-031-49783-4_8
https://doi.org/10.1007/978-3-031-49783-4_8
https://doi.org/10.1007/978-3-031-49783-4_8
https://doi.org/10.1007/978-981-19-4166-5_44
https://link.springer.com/10.1007/978-981-19-4166-5_44
https://link.springer.com/10.1007/978-981-19-4166-5_44
https://doi.org/10.1177/0950017010380648
https://doi.org/10.1177/0950017010380648
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1177/0049124118782533
http://journals.sagepub.com/doi/10.1177/0049124118782533
https://www.linuxfoundation.org
https://www.linuxfoundation.org
https://doi.org/10.48550/arXiv.1412.3756
http://arxiv.org/abs/1412.3756
https://proceedings.mlr.press/v28/zemel13.html
https://proceedings.mlr.press/v28/zemel13.html
https://papers.nips.cc/paper_files/paper/2017/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/9a49a25d845a483fae4be7e341368e36-Abstract.html
https://doi.org/10.1007/s10115-011-0463-8
http://link.springer.com/10.1007/s10115-011-0463-8
http://link.springer.com/10.1007/s10115-011-0463-8

Bibliography Bibliography

[29] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. “Mitigating Unwanted Biases with Ad-
versarial Learning”. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society.
AIES ’18. New York, NY, USA: Association for Computing Machinery, Dec. 2018, pp. 335–340. ISBN:
978-1-4503-6012-8. DOI: 10.1145/3278721.3278779. URL: https://dl.acm.org/doi/10.1145/3
278721.3278779 (visited on 05/22/2024) (cit. on p. 8).

[30] Home. en-US. URL: https://adversarial-robustness-toolbox.org/ (visited on 05/22/2024)
(cit. on p. 8).

[31] Alekh Agarwal et al. A Reductions Approach to Fair Classification. arXiv:1803.02453 [cs]. July
2018. DOI: 10.48550/arXiv.1803.02453. URL: http://arxiv.org/abs/1803.02453 (visited on
05/22/2024) (cit. on p. 8).

[32] An Empirical Study of Rich Subgroup Fairness for Machine Learning | Proceedings of the Conference on
Fairness, Accountability, and Transparency. URL: https://dl.acm.org/doi/10.1145/3287560.328
7592 (visited on 05/22/2024) (cit. on p. 8).

[33] L. Elisa Celis et al. Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees.
arXiv:1806.06055 [cs, stat]. Apr. 2020. DOI: 10.48550/arXiv.1806.06055. URL: http://arxiv.or
g/abs/1806.06055 (visited on 05/22/2024) (cit. on p. 8).

[34] Toshihiro Kamishima et al. “Fairness-Aware Classifier with Prejudice Remover Regularizer”. en. In:
Machine Learning and Knowledge Discovery in Databases. Ed. by Peter A. Flach, Tijl De Bie, and
Nello Cristianini. Berlin, Heidelberg: Springer, 2012, pp. 35–50. ISBN: 978-3-642-33486-3. DOI:
10.1007/978-3-642-33486-3_3 (cit. on p. 8).

[35] Geoff Pleiss et al. “On Fairness and Calibration”. In: Advances in Neural Information Processing
Systems. Vol. 30. Curran Associates, Inc., 2017. URL: https://proceedings.neurips.cc/pape
r_files/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html (visited on
05/22/2024) (cit. on p. 8).

[36] Moritz Hardt et al. “Equality of Opportunity in Supervised Learning”. In: Advances in Neural
Information Processing Systems. Vol. 29. Curran Associates, Inc., 2016. URL: https://papers.ni
ps.cc/paper_files/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
(visited on 05/22/2024) (cit. on p. 8).

[37] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. “Fairness-Aware Ranking in Search &
Recommendation Systems with Application to LinkedIn Talent Search”. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. arXiv:1905.01989
[cs]. July 2019, pp. 2221–2231. DOI: 10.1145/3292500.3330691. URL: http://arxiv.org/abs/1
905.01989 (visited on 05/22/2024) (cit. on p. 8).

[38] Decision Theory for Discrimination-Aware Classification | IEEE Conference Publication | IEEE Xplore.
URL: https://ieeexplore.ieee.org/document/6413831 (visited on 05/22/2024) (cit. on p. 8).

[39] COMPAS Recidivism Risk Score Data and Analysis. URL: https://www.propublica.org/datast
ore/dataset/compas-recidivism-risk-score-data-and-analysis (visited on 05/22/2024)
(cit. on p. 8).

[40] DOC COMPAS. URL: https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx (visited on 05/22/2024)
(cit. on p. 8).

[41] Ronny Kohavi Barry Becker. Adult. 1996. DOI: 10.24432/C5XW20. URL: https://archive.ics.uci
.edu/dataset/2 (visited on 05/22/2024) (cit. on p. 8).

[42] Hans Hofmann. Statlog (German Credit Data). 1994. DOI: 10.24432/C5NC77. URL: https://archiv
e.ics.uci.edu/dataset/144 (visited on 05/22/2024) (cit. on p. 8).

[43] Paula Gordaliza et al. “Obtaining Fairness using Optimal Transport Theory”. en. In: Proceedings
of the 36th International Conference on Machine Learning. ISSN: 2640-3498. PMLR, May 2019,
pp. 2357–2365. URL: https://proceedings.mlr.press/v97/gordaliza19a.html (visited on
05/22/2024) (cit. on p. 11).

35 35

https://doi.org/10.1145/3278721.3278779
https://dl.acm.org/doi/10.1145/3278721.3278779
https://dl.acm.org/doi/10.1145/3278721.3278779
https://adversarial-robustness-toolbox.org/
https://doi.org/10.48550/arXiv.1803.02453
http://arxiv.org/abs/1803.02453
https://dl.acm.org/doi/10.1145/3287560.3287592
https://dl.acm.org/doi/10.1145/3287560.3287592
https://doi.org/10.48550/arXiv.1806.06055
http://arxiv.org/abs/1806.06055
http://arxiv.org/abs/1806.06055
https://doi.org/10.1007/978-3-642-33486-3_3
https://proceedings.neurips.cc/paper_files/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/b8b9c74ac526fffbeb2d39ab038d1cd7-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://doi.org/10.1145/3292500.3330691
http://arxiv.org/abs/1905.01989
http://arxiv.org/abs/1905.01989
https://ieeexplore.ieee.org/document/6413831
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://doc.wi.gov/Pages/AboutDOC/COMPAS.aspx
https://doi.org/10.24432/C5XW20
https://archive.ics.uci.edu/dataset/2
https://archive.ics.uci.edu/dataset/2
https://doi.org/10.24432/C5NC77
https://archive.ics.uci.edu/dataset/144
https://archive.ics.uci.edu/dataset/144
https://proceedings.mlr.press/v97/gordaliza19a.html

Bibliography Bibliography

[44] Victor M. Panaretos and Yoav Zemel. “Statistical Aspects of Wasserstein Distances”. en. In: Annual
Review of Statistics and Its Application 6.1 (Mar. 2019). arXiv:1806.05500 [stat], pp. 405–431. ISSN:
2326-8298, 2326-831X. DOI: 10.1146/annurev-statistics-030718-104938. URL: http://arxiv
.org/abs/1806.05500 (visited on 05/22/2024) (cit. on p. 11).

[45] pandas - Python Data Analysis Library. URL: https://pandas.pydata.org/ (visited on 05/22/2024)
(cit. on p. 13).

[46] PyPI ů The Python Package Index. en. URL: https://pypi.org/ (visited on 05/22/2024) (cit. on
p. 13).

[47] Contributing to AIF360 aif360 0.6.1 documentation. URL: https://aif360.readthedocs.io/en/l
atest/CONTRIBUTING.html (visited on 05/22/2024) (cit. on p. 13).

[48] Welcome Sphinx documentation. URL: https://www.sphinx-doc.org/en/master/ (visited on
05/22/2024) (cit. on p. 13).

[49] Project Jupyter. en. URL: https://jupyter.org (visited on 05/22/2024) (cit. on p. 14).

[50] PEP 8 Style Guide for Python Code | peps.python.org. en. URL: https://peps.python.org/pep-000
8/ (visited on 05/22/2024) (cit. on p. 14).

[51] “Inspiron 16 7610 Setup and Specifications”. en. In: () (cit. on p. 14).

[52] SDPA Official Page. URL: https://sdpa.sourceforge.net/ (visited on 05/22/2024) (cit. on p. 18).

[53] Welcome to CVXPY 1.5 CVXPY 1.5 documentation. URL: https://www.cvxpy.org/ (visited on
05/22/2024) (cit. on p. 18).

[54] Quan-Zhou/Fairness-in-Learning-of-LDS. URL: https://github.com/Quan-Zhou/Fairness-in-Lea
rning-of-LDS (visited on 05/22/2024) (cit. on p. 19).

[55] Algorithms aif360 0.6.1 documentation. URL: https://aif360.readthedocs.io/en/stable/mo
dules/algorithms.html#module-aif360.algorithms.preprocessing (visited on 05/22/2024)
(cit. on p. 23).

[56] Distributions of the KullbackLeibler divergence with applications - Belov - 2011 - British Journal of
Mathematical and Statistical Psychology - Wiley Online Library. URL: https://bpspsychub.onlin
elibrary.wiley.com/doi/abs/10.1348/000711010X522227?casa_token=gHwChikjVs8AAAAA%3
A_YKB4tHp4jNDe2Idg7fAC87OGyVGtTyAKiDSbmPWGJDyDNXnb6gSkmJWWh-uavADVk1gNwrb5ZtwJn-5
(visited on 05/22/2024) (cit. on p. 26).

[57] Nicolas Loizou and Peter Richtárik. “Momentum and stochastic momentum for stochastic gradient,
Newton, proximal point and subspace descent methods”. en. In: Computational Optimization and
Applications 77.3 (Dec. 2020), pp. 653–710. ISSN: 1573-2894. DOI: 10.1007/s10589-020-00220-z.
URL: https://doi.org/10.1007/s10589-020-00220-z (visited on 06/04/2024) (cit. on p. 31).

36 36

https://doi.org/10.1146/annurev-statistics-030718-104938
http://arxiv.org/abs/1806.05500
http://arxiv.org/abs/1806.05500
https://pandas.pydata.org/
https://pypi.org/
https://aif360.readthedocs.io/en/latest/CONTRIBUTING.html
https://aif360.readthedocs.io/en/latest/CONTRIBUTING.html
https://www.sphinx-doc.org/en/master/
https://jupyter.org
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://sdpa.sourceforge.net/
https://www.cvxpy.org/
https://github.com/Quan-Zhou/Fairness-in-Learning-of-LDS
https://github.com/Quan-Zhou/Fairness-in-Learning-of-LDS
https://aif360.readthedocs.io/en/stable/modules/algorithms.html#module-aif360.algorithms.preprocessing
https://aif360.readthedocs.io/en/stable/modules/algorithms.html#module-aif360.algorithms.preprocessing
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1348/000711010X522227?casa_token=gHwChikjVs8AAAAA%3A_YKB4tHp4jNDe2Idg7fAC87OGyVGtTyAKiDSbmPWGJDyDNXnb6gSkmJWWh-uavADVk1gNwrb5ZtwJn-5
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1348/000711010X522227?casa_token=gHwChikjVs8AAAAA%3A_YKB4tHp4jNDe2Idg7fAC87OGyVGtTyAKiDSbmPWGJDyDNXnb6gSkmJWWh-uavADVk1gNwrb5ZtwJn-5
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1348/000711010X522227?casa_token=gHwChikjVs8AAAAA%3A_YKB4tHp4jNDe2Idg7fAC87OGyVGtTyAKiDSbmPWGJDyDNXnb6gSkmJWWh-uavADVk1gNwrb5ZtwJn-5
https://doi.org/10.1007/s10589-020-00220-z
https://doi.org/10.1007/s10589-020-00220-z

Appendix A

Github Repository Links

Project fork of the AIF360 Repository

Subgroup and Instantaneous Algorithms

Subgroup and Instantaneous Demonstration File

Distributional Repair Algorithm

Distributional Repair Demonstration File

37

https://github.com/JoeJohnson01/AIF360
https://github.com/JoeJohnson01/AIF360/blob/master/aif360/algorithms/postprocessing/lds_fairness.py
https://github.com/JoeJohnson01/AIF360/blob/master/examples/demo_lds_fairness.ipynb
https://github.com/JoeJohnson01/AIF360/blob/master/aif360/algorithms/preprocessing/distributional_repair.py
https://github.com/JoeJohnson01/AIF360/blob/master/examples/demo_distributional_repair.ipynb

Appendix B

Additional Algorithms

B.1 Subgroup and Instantaneous Fairness

Algorithm 7 CalculateBaseRate

procedure CALCULATEBASERATE(D, S, Ŷ)
Dprivileged,Dunprivileged ← SPLITDATA(D, S)
privilegedCount← |Dprivileged|
privilegedPosCount← |d ∈ Dprivileged : dŶ = 1|
unprivilegedCount← |Dunprivileged|
unprivilegedPosCount← |d ∈ Dunprivileged : dŶ = 1|
baseRatePrivileged← 1− privilegedPosCount

privilegedCount

baseRateUnprivileged← 1− unprivilegedPosCount
unprivilegedCount

return baseRatePrivileged, baseRateUnprivileged
end procedure

Algorithm 8 SplitData

procedure SPLITDATA(D, S)
Dprivileged ← d ∈ D : dS = 1
Dunprivileged ← d ∈ D : dS = 0
return Dprivileged,Dunprivileged

end procedure

Algorithm 9 CreateOptimization

procedure CREATEOPTIMIZATION(Dprivileged,Dunprivileged, X, Ŷ)
xV ars, e, z ← CREATEDECISIONVARIABLES(|X|)
constraints, objD ← GETCONSTRAINTS(Dprivileged,Dunprivileged, X, Ŷ , xV ars, e, z)
return constraints, objD, xV ars, e, z

end procedure

Algorithm 10 SolveOptimization

procedure SOLVEOPTIMIZATION(constraints, objD, xV ars, e, z)
xV arssolved, esolved, zsolved ← SOLVE(constraints, objD, xV ars, e, z)
return xV arssolved, esolved, zsolved

end procedure

38

B.1. Subgroup and Instantaneous Fairness Appendix B. Additional Algorithms

Algorithm 11 ReweighData

procedure REWEIGHDATA(D, X, Ŷ , xV arssolved, esolved)
Dreweighted← D
for d ∈ Dreweighted

if dS = 0 then
score←

∑|X|−1
i=0 xV arssolved[2i] · dXi + esolved[0]

else
score←

∑|X|−1
i=0 xV arssolved[2i+ 1] · dXi + esolved[1]

end if
dŶ ← score

end for
return Dreweighted

end procedure

Algorithm 12 Normalize

procedure NORMALIZE(D, Ŷ)
Dnormalized← D
Ŷ min← mind∈D dŶ
Ŷ max← max d ∈ DdŶ
for d ∈ Dnormalized

dŶ ← round
(

dŶ −Ŷ min
Ŷ max−Ŷ min

, 1

)
dŶ ← min(max(dŶ , 0), 1)

end for
return Dnormalized

end procedure

Algorithm 13 ApplyThreshold

procedure APPLYTHRESHOLD(D, baseRates, S, Ŷ)
Dclassified← D
thPrivileged← PERCENTILE(d ∈ D : dS = 1, Ŷ , baseRates[0] · 100)
thUnprivileged← PERCENTILE(d ∈ D : dS = 0, Ŷ , baseRates[1] · 100)
for d ∈ Dclassified

if dS = 1 then
dŶ ← 1[dŶ ≥ thPrivileged]

else
dŶ ← 1[dŶ ≥ thUnprivileged]

end if
end for
return Dclassified

end procedure

39 39

B.2. Distributional Repair Appendix B. Additional Algorithms

B.2 Distributional Repair

Algorithm 14 GetSupport

procedure GETSUPPORT(feat, uval, nq)
minval ← min(values of feat where u = uval)− 0.1 · range(values of feat where u = uval)
maxval ← max(values of feat where u = uval) + 0.1 · range(values of feat where u = uval)
return evenly spaced sequence of length nq from minval to maxval

end procedure

Algorithm 15 GetContinuousProbabilityDensityFunctions

procedure GETCONTINUOUSPROBABILITYDENSITYFUNCTIONS(feat, uval)
kde0 ← Kernel density estimation fit to values of feat where u = uval and s = 0
pdf0 ← exp(KDE scores of support using kde0)
kde1 ← Kernel density estimation fit to values of feat where u = uval and s = 1
pdf1 ← exp(KDE scores of support using kde1)
normalize pdf0 and pdf1 . Raise error if sum is 0
return pdf0, pdf1

end procedure

Algorithm 16 GetBarycenter

procedure GETBARYCENTER(pdf0, pdf1, feat, uval)
M ← pairwise distances between points in support
A← stack pdf0 and pdf1 as columns
barycenter ← Bregman barycenter of A using M
return barycenter . Raise error if invalid

end procedure

Algorithm 17 GetContinuousTransportPlans

procedure GETCONTINUOUSTRANSPORTPLANS(pdf0, pdf1, barycenter, feat, uval)
M ← pairwise distances between points in support
T0 ← Earth mover’s distance from pdf0 to barycenter using M
T1 ← Earth mover’s distance from pdf1 to barycenter using M
return T0, T1

end procedure

Algorithm 18 GetDiscreteProbabiltyMassFunctions

procedure GETDISCRETEPROBABILTYMASSFUNCTIONS(feat, uval)
pmf0 ← value counts of feat where u = uval and s = 0
pmf1 ← value counts of feat where u = uval and s = 1
return pmf0, pmf1

end procedure

40 40

B.2. Distributional Repair Appendix B. Additional Algorithms

Algorithm 19 GetDiscreteTransportPlan

procedure GETDISCRETETRANSPORTPLAN(pmf0, pmf1)
M ← pairwise distances between unique values of pmf0 and pmf1
weights0 ← pmf0 values normalized by sum
weights1 ← pmf1 values normalized by sum
T ← Earth mover’s distance from weights0 to weights1 using M
return T

end procedure

41 41

Appendix C

Word Count

Total
Words in text: 7160
Words in headers: 215
Words outside text (captions, etc.): 264
Number of headers: 60
Number of floats/tables/figures: 20
Number of math inlines: 294
Number of math displayed: 20

The word count above does not include the following:

• Title Page

• Acknowledgements

• Contents

• Bibliography

• Appendix

42

	Introduction
	AI Fairness: Background and Current Challenges
	An Introduction To Fairness
	S, X, Y Model and Notation
	Notions of Fairness
	Toolkits for Fairness in AI

	State-of-the-Art Notions Of AI Fairness and Repair
	Subgroup and Instantaneous Fairness
	Conditional Independence

	Software Methodology for Implementing Algorithms Within AIF360
	Development
	Testing and Evaluation

	LDS Fairness Algorithms
	Development
	Testing and Evaluation
	Discussion

	Distributional Repair Algorithm
	Development
	Testing and Evaluation
	Discussion

	Conclusion
	Summary of Work
	Recommendations For Future Work

	Github Repository Links
	Additional Algorithms
	Subgroup and Instantaneous Fairness
	Distributional Repair

	Word Count

